64 research outputs found

    Constraints on RG Flows from Holographic Entanglement Entropy

    Full text link
    We examine the RG flow of a candidate c-function, extracted from the holographic entanglement entropy of a strip-shaped region, for theories with broken Lorentz invariance. We clarify the conditions on the geometry that lead to a break-down of monotonic RG flows as is expected for generic Lorentz-violating field theories. Nevertheless we identify a set of simple criteria on the UV behavior of the geometry which guarantee a monotonic c-function. Our analysis can thus be used as a guiding principle for the construction of monotonic RG trajectories, and can also prove useful for excluding possible IR behaviors of the theory.Comment: 5 pages, no figure

    Criteria For Superfluid Instabilities of Geometries with Hyperscaling Violation

    Full text link
    We examine the onset of superfluid instabilities for geometries that exhibit hyperscaling violation and Lifshitz-like scaling at infrared and intermediate energy scales, and approach AdS in the ultraviolet. In particular, we are interested in the role of a non-trivial coupling between the neutral scalar supporting the scaling regime, and the (charged) complex scalar which condenses. The analysis focuses exclusively on unstable modes arising from the hyperscaling-violating portion of the geometry. Working at zero temperature, we identify simple analytical criteria for the presence of scalar instabilities, and discuss under which conditions a minimal charge will be needed to trigger a transition. Finite temperature examples are constructed numerically for a few illustrative cases.Comment: 41 pages, 7 figure

    Intertwined Orders in Holography: Pair and Charge Density Waves

    Full text link
    Building on [1], we examine a holographic model in which a U(1) symmetry and translational invariance are broken spontaneously at the same time. The symmetry breaking is realized through the St\"{u}ckelberg mechanism, and leads to a scalar condensate and a charge density which are spatially modulated and exhibit unidirectional stripe order. Depending on the choice of parameters, the oscillations of the scalar condensate can average out to zero, with a frequency which is half of that of the charge density. In this case the system realizes some of the key features of pair density wave order. The model also admits a phase with co-existing superconducting and charge density wave orders, in which the scalar condensate has a uniform component. In our construction the various orders are intertwined with each other and have a common origin. The fully backreacted geometry is computed numerically, including for the case in which the theory contains axions. The latter can be added to explicitly break translational symmetry and mimic lattice-type effects.Comment: 37 pages, 17 figure

    Correlation Functions and Hidden Conformal Symmetry of Kerr Black Holes

    Get PDF
    Extremal scalar three-point correlators in the near-NHEK geometry of Kerr black holes have recently been shown to agree with the result expected from a holographically dual non-chiral two-dimensional conformal field theory. In this paper we extend this calculation to extremal three-point functions of scalars in a general Kerr black hole which need not obey the extremality condition M=JM=\sqrt{J}. It was recently argued that for low frequency scalars in the Kerr geometry there is a dual conformal field theory description which determines the interactions in this regime. Our results support this conjecture. Furthermore, we formulate a recipe for calculating finite-temperature retarded three-point correlation functions which is applicable to a large class of (even non-extremal) correlators, and discuss the vanishing of the extremal couplings.Comment: 16 page

    Dilaton Dynamics from Production of Tensionless Membranes

    Get PDF
    In this paper we consider classical and quantum corrections to cosmological solutions of 11D SUGRA coming from dynamics of membrane states. We first consider the supermembrane spectrum following the approach of Russo and Tseytlin for consistent quantization. We calculate the production rate of BPS membrane bound states in a cosmological background and find that such effects are generically suppressed by the Planck scale, as expected. However, for a modified brane spectrum possessing enhanced symmetry, production can be finite and significant. We stress that this effect could not be anticipated given only a knowledge of the low-energy effective theory. Once on-shell, inclusion of these states leads to an attractive force pulling the dilaton towards a fixed point of S-duality, namely gs=1g_s=1. Although the SUGRA description breaks down in this regime, inclusion of the enhanced states suggests that the center of M-theory moduli space is a dynamical attractor. Morever, our results seem to suggest that string dynamics does indeed favor a vacuum near fixed points of duality.Comment: 39 pages, 7 figures, minor corrections and reference adde

    Backreacted DBI Magnetotransport with Momentum Dissipation

    Full text link
    We examine magnetotransport in a holographic Dirac-Born-Infeld model, taking into account the effects of backreaction on the geometry. The theory we consider includes axionic scalars, introduced to break translational symmetry and generate momentum dissipation. The generic structure of the DC conductivity matrix for these theories is extremely rich, and is significantly more complex than that obtained in the probe approximation. We find new classes of black brane solutions, including geometries that exhibit Lifshitz scaling and hyperscaling violation, and examine their implications on the transport properties of the system. Depending on the choice of theory parameters, these backgrounds can lead to metallic or insulating behavior. Negative magnetoresistance is observed in a family of dynoic solutions. Some of the new backreacted geometries also support magnetic-field-induced metal-insulator transitions.Comment: 34 pages, 9 figures; v2: references added, minor improvements, to appear in JHE

    Holographic RG flows with nematic IR phases

    Get PDF
    We construct zero-temperature geometries that interpolate between a Lifshitz fixed point in the UV and an IR phase that breaks spatial rotations but preserves translations. We work with a simple holographic model describing two massive gauge fields coupled to gravity and a neutral scalar. Our construction can be used to describe RG flows in non-relativistic, strongly coupled quantum systems with nematic order in the IR. In particular, when the dynamical critical exponent of the UV fixed point is z=2 and the IR scaling exponents are chosen appropriately, our model realizes holographically the scaling properties of the bosonic modes of the quadratic band crossing model.Comment: 19 pages, 2 figures. References added. Expanded discussion on nematic orde
    • …
    corecore